By Topic

Robust Covariance Estimation for Data Fusion From Multiple Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
João Sequeira ; Institute for Systems and Robotics, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal ; Antonios Tsourdos ; Samuel B. Lazarus

This paper addresses the robust estimation of a covariance matrix to express uncertainty when fusing information from multiple sensors. This is a problem of interest in multiple domains and applications, namely, in robotics. This paper discusses the use of estimators using explicit measurements from the sensors involved versus estimators using only covariance estimates from the sensor models and navigation systems. Covariance intersection and a class of orthogonal Gnanadesikan-Kettenring estimators are compared using the 2-norm of the estimates. A Monte Carlo simulation of a typical mapping experiment leads to conclude that covariance estimation systems with a hybrid of the two estimators may yield the best results.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:60 ,  Issue: 12 )