By Topic

Impacts of Nanocrystal Location on the Operation of Trap-Layer-Engineered Poly-Si Nanowired Gate-All-Around SONOS Memory Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cheng-Wei Luo ; Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University , Hsinchu, Taiwan ; Horng-Chih Lin ; Ko-Hui Lee ; Wei-Chen Chen
more authors

Trap-layer-engineered poly-Si nanowire silicon-oxide-nitride-oxide-silicon (SONOS) devices with a gate-all-around (GAA) configuration were fabricated and characterized. For the first time, a clever method has been developed to flexibly incorporate Si-nanocrystal (NC) dots in different locations in the nitride layer. Three types of poly-Si GAA SONOS devices with Si-NC dots embedded in the block oxide/nitride interface, the middle of the nitride, and the nitride/tunnel oxide interface, respectively, by in situ deposition were fabricated and investigated in this paper. Our results indicate that the optimal NC location appears to be somewhere between the middle and bottom interfaces of the nitride layer.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 7 )