By Topic

Backtracking-Based Matching Pursuit Method for Sparse Signal Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Honglin Huang ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ; Anamitra Makur

This letter presents a variant of Orthogonal Matching Pursuit (OMP) method, called Backtracking-based Adaptive OMP (BAOMP), for compressive sensing and sparse signal reconstruction. As an extension of the OMP algorithm, the BAOMP method incorporates a simple backtracking technique to detect the previous chosen atoms' reliability and then deletes the unreliable atoms at each iteration. Through this modification, the BAOMP method achieves superior performance while maintaining the low complexity of OMP-type methods. Also, unlike its several predecessors, the BAOMP method does not require the sparsity level to be known a priori. The experiments demonstrate the proposed method's superior performance to that of several other OMP-type and l1 optimization methods.

Published in:

IEEE Signal Processing Letters  (Volume:18 ,  Issue: 7 )