By Topic

Fast parameter extraction of general interconnects using geometry independent measured equation of invariance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sun, W. ; Dept. of Comput. Sci., California Univ., Santa Cruz, CA, USA ; Wayne Wei-Ming Dai ; Wei Hong

The measured equation of invariance (MEI) is a new concept in computational electromagnetics. It has been demonstrated that the MEI technique can be used to terminate the meshes very close to the object boundary and still strictly preserves the sparsity of the finite-difference (FD) equations. Therefore, the final system matrix encountered by the MEI is a sparse matrix with a size similar to that of integral equation methods. However complicated the Green's function, disagreeable Sommerfeld integrals, and very difficult umbilical meshes for multiconductors make the traditional MEI very difficult (if not impossible) to be applied to analyze multilayer and multiconductor interconnects. In this paper, the authors propose the geometry independent MEI (GIMEI) which substantially improves the original MEI method. The authors use GIMEI for capacitance extraction of general two-dimensional (2-D) and three-dimensional (3-D) very large scale integration (VLSI) interconnect. numerical results are in good agreement with published data and those obtained by using FASTCAP from Massachusetts Institute of Technology (MIT) and some other commercial tools, while GIMEIs are generally an order of magnitude faster than FASTCAP with much less memory usage

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:45 ,  Issue: 5 )