By Topic

Control of Minimally Persistent Leader-Remote-Follower and Coleader Formations in the Plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Summers, T.H. ; Australian Nat. Univ., Canberra, ACT, Australia ; Changbin Yu ; Dasgupta, S. ; Anderson, B.D.O.

This paper solves an n -agent formation shape control problem in the plane. The objective is to design decentralized control laws so that the agents cooperatively restore a prescribed formation shape in the presence of small perturbations from the prescribed shape. We consider two classes of directed, cyclic information architectures associated with so-called minimally persistent formations: leader-remote-follower and coleader. In our framework the formation shape is maintained by controlling certain interagent distances. Only one agent is responsible for maintaining each distance. We propose a decentralized control law where each agent executes its control using only the relative position measurements of agents to which it must maintain its distance. The resulting nonlinear closed-loop system has a manifold of equilibria, which implies that the linearized system is nonhyperbolic. We apply center manifold theory to show local exponential stability of the desired formation shape. The result circumvents the non-compactness of the equilibrium manifold. Choosing stabilizing gains is possible if a certain submatrix of the rigidity matrix has all leading principal minors nonzero, and we show that this condition holds for all minimally persistent leader-remote-follower and coleader formations with generic agent positions. Simulations are provided.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 12 )