Cart (Loading....) | Create Account
Close category search window
 

Topology Optimization of a Magnetic Actuator Based on a Level Set and Phase-Field Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sunghoon Lim ; Dept. of Automotive Eng., Hanyang Univ., Seoul, South Korea ; Yamada, T. ; Seungjae Min ; Nishiwaki, S.

This paper aims to develop a topology optimization method for magnetic actuator design, which can control the geometrical complexity of optimal configurations, using a level set model that incorporates a fictitious interface energy model based on concepts in the phase-field method. By adding a fictitious interface energy term to the objective functional, the optimization problem is sufficiently relaxed and the obtained optimal configurations have sufficient smoothness. The optimization problem is formulated to maximize the performance of a magnetic actuator under a volume constraint for the ferromagnetic material. The update scheme for implicit moving boundaries is developed based on time evolutional equations. The proposed method is applied to the structural design of a C-core actuator and a numerical example confirms the effectiveness of the method for achieving optimal configurations that deliver enhanced performance.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.