By Topic

A Population-Based Incremental Learning Vector Algorithm for Multiobjective Optimal Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, S.L. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Shiyou Yang ; Fu, W.N.

To alleviate the deficiency of crossover and mutation operations in standard genetic algorithms, the population-based incremental learning (PBIL) method is extended for multiobjective designs of inverse problems. To quantitatively measure the number of improvements in the whole objective functions and to quantify the amount of improvements in a specific objective function, a novel metric is proposed to “penalize” the fitness of a solution. Moreover, a selecting strategy for the best solutions of the latest iterations of an individual is introduced. Furthermore, multiple probability vectors are employed to enhance the diversity of the found solutions. Numerical experiments on low- and high-frequency inverse problems are carried out to demonstrate the feasibility of the proposed vector PBIL algorithm for hard multiobjective engineering inverse problems.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )