Cart (Loading....) | Create Account
Close category search window
 

Optimization of Two-Phase In-Wheel IPMSM for Wide Speed Range by Using the Kriging Model Based on Latin Hypercube Sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, J.B. ; Dept. of Electron., Electr., Control & Instrum. Eng., Hanyang Univ., Ansan, South Korea ; Hwang, K.Y. ; Kwon, B.I.

This paper introduces an optimal design process for in-wheel interior permanent magnet synchronous motor (IPMSM) to achieve wide speed range. A finite element method (FEM) was used for calculating the inductances of the d-axis and q-axis by changing the structure of rotor shape in IPMSM. After FEM analysis, optimal design process to find optimal rotor shape is processed for wide speed range. In optimal process, the Kriging method based on the Latin hypercube sampling (LHS) and a genetic algorithm (GA) are applied due to suitability to non-linear data. Using this optimal design process, an optimal rotor shape is obtained. The optimal model has an increased wide speed range with reduced cogging torque.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.