Cart (Loading....) | Create Account
Close category search window
 

High quality Ge thin film grown by ultrahigh vacuum chemical vapor deposition on GaAs substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tang, Shih-Hsuan ; Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-chu 300, Taiwan ; Chang, Edward Yi ; Hudait, M. ; Maa, Jer-Shen
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3580605 

High-quality epitaxial Ge films were grown on GaAs substrates by ultrahigh vacuum chemical vapor deposition. High crystallinity and smooth surface were observed for these films by x-ray diffraction, transmission electron microscopy, and atomic force microscopy. Direct band gap emission (1550 nm) from this structure was detected by photoluminescence. Valence band offset of 0.16 eV at the Ge/GaAs interface was measured by x-ray photoelectron spectroscopy. N-type arsenic self-doping of 1018/cm-3 in the grown Ge layers was determined using electrochemical capacitance voltage measurement. This structure can be used to fabricate p-channel metal-oxide-semiconductor field-effect transistor for the integration of Ge p-channel device with GaAs n-channel electronic device.

Published in:

Applied Physics Letters  (Volume:98 ,  Issue: 16 )

Date of Publication:

Apr 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.