Cart (Loading....) | Create Account
Close category search window

Incorporating repair information into maintenance optimization models for repairable systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wong, E.L. ; Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON, Canada ; Jardine, A.K.S. ; Banjevic, D.

Any organization that owns any large capital assets will eventually face a crucial decision - whether to repair or replace those assets, and when. This decision can have far-reaching consequences - replacing too early can mean a waste of resources, and replacing too late can mean catastrophic failure. The first is becoming more unacceptable in today's sustainability-oriented society, and the second is unacceptable in the competitive marketplace. If large capital assets are analyzed as repairable systems, additional significant information can be incorporated into maintenance optimization models. Examples of such systems are power transformers in the electricity industry and haul trucks in the mining industry, among many others. When these assets break down, but have not yet reached their end-of-life, they can be repaired and returned to operating condition. However, these repairs often reduce the remaining useful life (RUL) of the system. The RUL of a system is an important factor in decision making for capital assets. If a company can correctly predict the remaining useful life of a repairable system, they can estimate the cost of maintaining and repairing the system until that point, or they can evaluate the potential benefits of replacing the entire system at a prior point. Standard methods of predicting the RUL often use condition monitoring data that companies may obtain as part of their regular maintenance practices. However, they often ignore or minimize the importance of repair information. It is expected that including this type of information can greatly improve RUL predictions upon further analysis. A number of other factors that must be considered when making economic decisions based on RUL will also be discussed. In this paper, we consider a proportional hazards model that includes a covariate based on the repair and maintenance information available. A case study is based on data from a major Canadian utility for power transformers. The covariate is s hown to improve the fit of a hazard model developed using EXAKT software.

Published in:

Reliability and Maintainability Symposium (RAMS), 2011 Proceedings - Annual

Date of Conference:

24-27 Jan. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.