By Topic

Applicability of the GP Device to the Circle of Willis Arteries by Using a Mathematical Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
G. Romero ; ETSI Eng., Tech. Univ. of Madrid, Madrid, Spain ; M. L. Martinez ; J. Felez ; G. Pearce
more authors

According to the World Health Organization, 15 million people suffer stroke worldwide each year, of these, 5 million die and 5 million are permanently disabled. Stroke is therefore a major cause of mortality world-wide. The majority of strokes are caused by a blood clot that occludes an artery in the brain, and although thrombolytic agents such as Alteplase are used to dissolve clots that arise in the arteries of the brain, there are limitations on the use of these thrombolytic agents. However over the past decade, other methods of treatment have been developed which include Thrombectomy Devices e.g. the 'GP' Thrombus Aspiration Device ('GP' TAD). Such devices may be used as an alternative to thrombolytics or in conjunction with them to extract blood clots in arteries such as the middle cerebral artery of the midbrain brain, and the posterior inferior cerebellar artery (PICA) of the posterior aspect of the brain. In this paper, we mathematically model the removal of blood clots using the 'GP' TAD from selected arteries of the brain where blood clots may arise taking into account factors such as the resistances, compliances and inertances effects. Such mathematical modelling may have potential uses in predicting the pressures necessary to extract blood clots of given lengths, and masses from arteries in the Circle of Willis - posterior circulation of the brain.

Published in:

Computer Modelling and Simulation (UKSim), 2011 UkSim 13th International Conference on

Date of Conference:

March 30 2011-April 1 2011