Cart (Loading....) | Create Account
Close category search window
 

Robust adaptive directional lifting wavelet transform for image denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, X.T. ; Key Lab. of Intell. Perception & Image Understanding of Minist. of Educ., Xidian Univ., Xi'an, China ; Shi, G.M. ; Niu, Y. ; Zhang, L.

Recent researches have shown that the adaptive directional lifting (ADL) can represent edges and textures in images effectively. This makes it possible to separate noise from image signal distinctly in image denoising. However, a key issue named orientation estimation for ADL becomes inefficient and error prone in the noised circumstance. The authors propose a robust adaptive directional lifting-based (RADL) wavelet transform for image denoising by constructing ADL in an anti-noise way. In our method, a simple model of pixel pattern classification is incorporated into orientation estimation module to strengthen the robustness of this algorithm. Moreover, instead of determining the transform strategy based on sub-blocks, RADL is performed on pixel-level to pursue better denoising results. Experimental results show that the proposed technique demonstrates both PSNR and visual quality improvement on images with rich textures.

Published in:

Image Processing, IET  (Volume:5 ,  Issue: 3 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.