By Topic

Multi-agent methodology for distributed and cooperative supervisory estimation subject to unreliable information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azizi, S.M. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montréal, QC, Canada ; Tousi, M.M. ; Khorasani, K.

In this work, a novel multi-agent framework for cooperative supervisory estimation of linear time-invariant systems is proposed. This framework is developed based on the notion of subobservers and a discrete-event system (DES) supervisory control and is applicable to large-scale systems. We introduce a group of subobservers where each subobserver is estimating certain states that are conditioned on a given input, output and state information. The cooperation among the subobservers is managed by a DES supervisor. The supervisor makes decisions regarding the selection and configuration of a set of subobservers to successfully estimate all the system states, while the feasibility of the overall integrated cooperative subobservers is verified. When certain anomalies (faults) are present in the system, or the sensors and subobservers become unreliable, the supervisor reconfigures the set of selected subobservers so that the impacts of anomalies on the estimation performance are minimised to the extent that is possible. The application and capabilities of our proposed methodology in a practical industrial process is demonstrated through numerical simulations.

Published in:

Control Theory & Applications, IET  (Volume:5 ,  Issue: 4 )