Cart (Loading....) | Create Account
Close category search window
 

Assessing the Vulnerability of a Power System Through a Multiple Objective Contingency Screening Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rocco, C.M. ; Fac. de Ing., Univ. Central de Venezuela, Caracas, Venezuela ; Ramirez-Marquez, J.E. ; Salazar, D.E. ; Yajure, C.

This paper introduces a new, alternative approach for the analysis of power systems vulnerability based on a hybrid model that combines elements of the classical Deterministic Network Interdiction Problem (DNIP) with the use of an efficient multi-objective optimization evolutionary algorithm (MOEA). From a power systems perspective, the traditional DNIP is implemented as a surrogate approach to understand the interaction between the power system's component incapacitation (due to random failures or external attacks), and the system load shedding. The paper recognizes that, when analyzing power system vulnerability, it is possible to have multiple competing objectives and multiple prospective solutions that may change based on the preference of the decision-maker. This multi-objective view of the DNIP in the power systems context is solved using MOEA. As a result, the proposed approach could be used as an initial, straightforward screening approach to identify severe system disturbances. Several examples illustrate that the approach is able to reproduce and improve upon the results presented in previous studies.

Published in:

Reliability, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.