By Topic

PET System Synchronization and Timing Resolution Using High-Speed Data Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Aliaga, R.J. ; Inst. de Instrumentacion para Imagen Mol. (I3M), Univ. Politec. de Valencia, Valencia, Spain ; Monzo, J.M. ; Spaggiari, M. ; Ferrando, N.
more authors

Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this effect to be negligible on overall timing resolution. This is usually achieved by connecting all boards to a common backplane with a precise clock delivery network; however, this approach forces a rigid structure on the whole PET system and may pose scalability problems. As an alternative, we propose a backplane-less PET system architecture in which DAQ boards are connected by single full-duplex high-speed data links. Data encoding with embedded clock is used to correct frequency differences between local oscillators. Timestamp synchronization between FPGAs with clock period resolution is maintained by means of data transfers in a way similar to the IEEE 1588 standard. Finer resolution is achieved by reflection of received clocks and phase difference measurement on the transmitter. It is crucial that data transceivers have very low latency uncertainty in order to achieve the desired timestamp accuracy; we discuss the availability of off-the-shelf hardware for these implementations.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 4 )