By Topic

Complementary PID Controller to Passivity-Based Nonlinear Control of Boost Converters With Inductor Resistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young Ik Son ; Dept. of Electr. Eng., Myongji Univ., Yongin, South Korea ; In Hyuk Kim

Since the DC-DC boost converter exhibits highly nonlinear and non-minimum phase properties, it is not an easy task to design a controller that is robust against load perturbations. This paper presents a dynamic output feedback controller for a DC-DC boost converter that has a practical inductor and a series resistance. In order to maintain its robust output voltage regulation, the proposed controller adopts a simplified parallel-damped passivity-based controller (PD-PBC). A complementary proportional-integral-differential (PID) controller to the PD-PBC has been designed for removing the steady state error owing to the parasitic resistance. We present sufficient conditions for the asymptotic stability of the augmented system with an additional dynamic system. Computer simulations and experimental tests under reference step changes and load perturbations confirm the improved performance of the proposed approach.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 3 )