By Topic

Power Allocation Strategies for Target Localization in Distributed Multiple-Radar Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Godrich, H. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Petropulu, A.P. ; Poor, H.V.

Widely distributed multiple radar architectures offer parameter estimation improvement for target localization. For a large number of radars, the achievable localization minimum estimation mean-square error (MSE), with full resource allocation, may extend beyond the predetermined system performance goals. In this paper, performance driven resource allocation schemes for multiple radar systems are proposed. All available antennas are used in the localization process. For a predefined estimation MSE threshold, the total transmitted energy is minimized such that the performance objective is met, while keeping the transmitted power at each station within an acceptable range. For a given total power budget, the attainable localization MSE is minimized by optimizing power allocation among the transmit radars. The Cramer-Rao bound (CRB) is used as an optimization metric for the estimation MSE. The resulting nonconvex optimization problems are solved through relaxation and domain decomposition methods, supporting both central processing at the fusion center and distributed processing. It is shown that uniform or equal power allocation is not necessarily optimal and that the proposed power allocation algorithms result in local optima that provide either better localization MSE for the same power budget, or require less power to establish the same performance in terms of estimation MSE. A physical interpretation of these conclusions is offered.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 7 )