Cart (Loading....) | Create Account
Close category search window
 

Dynamic Analysis of Cascaded Laser Power Converters for Simultaneous High-Speed Data Detection and Optical-to-Electrical DC Power Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shi, Jin-Wei ; Dept. of Electr. Eng., Nat. Central Univ., Taoyuan, Taiwan ; Kuo, F.-M. ; Chan-Shan Yang ; Lo, S.-S.
more authors

We analyze the dynamic behaviors of a novel device, i.e., cascaded high-speed laser power converters (LPCs), which can detect the direct-current (dc) component of an incoming high-speed optical data stream and efficiently convert its dc component to dc electrical power. By utilizing a p-type photoabsorption layer in our LPC, the problem of slow-motion holes can be eliminated, and only the electrons act as the active carriers. We can thus achieve high-speed performance with the LPC under forward-bias operation with a small electric field inside. Furthermore, according to our modeling and measurement results, there are a significant alternating-current capacitance reduction and an electron-trapping effect at the interface between the absorption and collector layers with a significant degradation in the carrier drift velocity. These become more serious with the increase in optical pumping power and forward-bias voltage and truly limit the net optical-to-electrical (O-E) bandwidth of the device. In order to overcome such a transient-time-limited bandwidth and further increase the maximum dc output voltage of the LPC, we connect two single LPCs in series (cascade). Error-free data detection of 10-Gb/s and an O-E dc power-generation efficiency of 21.1% can be achieved simultaneously at a wavelength of 850 nm by the use of such two cascaded LPCs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.