By Topic

Unsupervised Discovery of Temporal Structure in Music

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weiss, R.J. ; Music & Audio Res. Lab. (MARL), New York Univ., New York, NY, USA ; Bello, J.P.

We describe a data-driven algorithm for automatically identifying repeated patterns in music which analyzes a feature matrix using shift-invariant probabilistic latent component analysis. We utilize sparsity constraints to automatically identify the number of patterns and their lengths, parameters that would normally need to be fixed in advance, as well as to control the structure of the decomposition. The proposed analysis is applied to beat-synchronous chromagrams in order to concurrently extract recurrent harmonic motifs and their locations within a song. We demonstrate how the analysis can be used to accurately identify riffs in popular music and explore the relationship between the derived parameters and a song's underlying metrical structure. Finally, we show how this analysis can be used for long-term music structure segmentation, resulting in an algorithm that is competitive with other state-of-the-art segmentation algorithms based on hidden Markov models and self similarity matrices.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 6 )