By Topic

Inferring the Number of Contributors to Mixed DNA Profiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paoletti, D.R. ; Dept. of Comput. Sci., Pennsylvania State Univ. Beaver, Monaca, PA, USA ; Krane, D.E. ; Raymer, M.L. ; Doom, T.E.

Forensic samples containing DNA from two or more individuals can be difficult to interpret. Even ascertaining the number of contributors to the sample can be challenging. These uncertainties can dramatically reduce the statistical weight attached to evidentiary samples. A probabilistic mixture algorithm that takes into account not just the number and magnitude of the alleles at a locus, but also their frequency of occurrence allows the determination of likelihood ratios of different hypotheses concerning the number of contributors to a specific mixture. This probabilistic mixture algorithm can compute the probability of the alleles in a sample being present in a 2-person mixture, 3-person mixture, etc. The ratio of any two of these probabilities then constitutes a likelihood ratio pertaining to the number of contributors to such a mixture.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 1 )