By Topic

Analytical Model for the Optimization of Self-Organizing Image Processing Systems Utilizing Cellular Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reichenbach, M. ; Dept. Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nuremberg, Germany ; Schmidt, M. ; Fey, D.

The usage of Cellular Automata (CA) for image processing tasks in self-organizing systems is a well known method, but it is a challenge to process such CAs in an embedded hardware efficiently. CAs present a helpful base for the design of both robust and fast solutions for embedded image processing hardware. Therefore, we have developed a system on a chip called ParCA which is a programmable architecture for the realization of parallel image processing algorithms based on CAs. In order to be able to determine the optimal parameters for such an image processing system, for example the degree of parallelization or the optimum partitioning size for large input images parallel processing, we deduced an analytical model comprising of a set of equations which reflect the dependencies of these parameters. By means of a multi-dimensional optimization it is possible with our model to evaluate existing systems in order to find bottlenecks or to build new architectures in an optimal way relating to given constraints.

Published in:

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011 14th IEEE International Symposium on

Date of Conference:

28-31 March 2011