Cart (Loading....) | Create Account
Close category search window
 

Hybrid Statistical Link Simulation Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dan Oh ; Rambus Inc., Los Altos, CA, USA ; Jihong Ren ; Sam Chang

Accurate analysis of link performance including deterministic and random effects as well as advanced signal conditioning schemes is crucial in modern high-speed I/O design. In recent years, statistical link performance tools such as LinkLab and StatEye are introduced to efficiently analyze the overall link performance with both deterministic and random noise. The statistical-domain analysis has limitations in terms of its capability of accurately simulating system nonlinearity, jitter, as well as coding. In this paper, we present a new hybrid approach that combines statistical and time-domain techniques to efficiently overcome these limitations. The proposed method has several key contributions: 1) capture system nonlinearity; 2) separately simulate short-term deterministic jitter in the time domain and long-term deterministic and random jitter in the statistical domain; 3) co-simulate clock and data channels to capture jitter tracking; and 4) co-simulate signal and power integrity to include simultaneous switching output noise. We demonstrate this hybrid approach by studying the jitter tracking capability of a clock forwarding scheme and the effectiveness of coding in terms of system bit error rate.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:1 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.