By Topic

Numerical modeling of low-pressure RF plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Vendor ; Plasma Res. Lab., Australian Nat. Univ., Canberra, ACT, Australia ; R. W. Boswell

A particle-in-cell simulation is used to model the plasma generated in a parallel plate RF reactor at low pressure. Nonperiodic boundary conditions are used, and the electric field and particle motion are obtained by finite-difference methods leading to the self-consistent creation of sheaths on the boundaries. Model cross sections are used to describe collisions between particles. Ionization is included, and the plasma is maintained by fast electrons generated in the RF sheaths. Most of the power dissipation is due to the acceleration of ions in the time-average sheath fields. At high applied voltage, the power dissipation is described well by the power law PV5/2. Simple scaling laws for the density and plasma potential are obtained. The effect of ion mass and charge-exchange colisions on the ion energy spectrum collected by the electrodes is examined. The ion loss rate drops in the presence of charge-exchange collisions, and this leads to an increase in the density. The collisions also markedly alter the ion energy distribution function

Published in:

IEEE Transactions on Plasma Science  (Volume:18 ,  Issue: 4 )