By Topic

Rotor position estimation of 6/4 Switched Reluctance Motor using a novel neural network algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beno, M.M. ; Eng. Dept., Ibra Coll. of Technol. Minist. of Manpower, Ibra, Oman ; Rajaji, L. ; Varatharaju, V M ; Santos, A.N.

This paper presents a novel approach for estimating the rotor position of a Switched Reluctance Motor (SRM) drive system using the Cascade Correlation Artificial Neural Network Algorithm (CCNNA). This technique estimates rotor position by measuring the three-phase voltages and currents and using magnetic characteristics of the SRM, with the aid of an ANN. The rotor position estimating technique is used in a high-performance sensor less variable speed SRM drive. The results are compared with the measured values, and the error analyses are given to determine the performance of the developed method. The error analyses have shown great accuracy and successful rotor position estimation technique for a 6/4 pole SRM using the cascade correlation algorithm-based ANN.

Published in:

GCC Conference and Exhibition (GCC), 2011 IEEE

Date of Conference:

19-22 Feb. 2011