By Topic

Batch Production Scheduling for Semiconductor Back-End Operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mengying Fu ; Sch. of Comput., Inf., & Decision Syst. Eng., Arizona State Univ., Tempe, AZ, USA ; Askin, R. ; Fowler, J. ; Haghnevis, M.
more authors

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. However, the scheduling process is usually difficult due to the wide product mix, large number of parallel machines, product family-related setups, and high weekly demand consisting of thousands of lots. In this paper, we present a new mixed-integer-linear-programming (MILP) model for the batch production scheduling of a semiconductor back-end facility with serial production stages. Computational results are provided for finding optimal solutions to small problem instances. Due to the limitation on the solvable size of the MILP formulation, a deterministic scheduling system (DSS), including an optimizer and a scheduler, is proposed to provide suboptimal solutions in a reasonable time for large real-world problem instances. Small problem instances are randomly generated to compare the performances of the optimization model and the DSS. An experimental design is utilized to understand the behavior of the DSS under different production scenarios.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:24 ,  Issue: 2 )