By Topic

Online Parameter Optimization-Based Prediction for Converter Gas System by Parallel Strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Zhao ; School of Control Science and Engineering, Dalian University of Technology, China ; Wei Wang ; Witold Pedrycz ; Xiangwei Tian

Linz Donawitz converter gas (LDG) is one of the most important sources of fuel energy in steel industry, whose reasonable use plays a crucial role in energy saving and environment protection. In practice, online prediction of variation of gas holder level and gas demand by users is fundamental to gas utilization and scheduling activities. In this study, a least square support vector machine-based prediction model combined with the parallel strategies is proposed, in which parameter optimization is realized online by a parallel particle swarm optimization and a parallelized validation method, both being implemented with the use of a graphic processing unit. The experiments demonstrate that the online parameter optimization based model greatly improves the prediction quality compared to the version with the fixed modeling parameters. Furthermore, the parallelized strategies largely reduce the computational cost thus guaranteeing the real-time effectiveness of the practical application.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:20 ,  Issue: 3 )