Cart (Loading....) | Create Account
Close category search window

Pulsed eddy current differential probe to detect the defects in a stainless steel pipe

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Angani, C.S. ; Nuclear Materials Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600, South Korea ; Park, D.G. ; Kim, C.G. ; Leela, P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Pulsed eddy current (PEC) is an electromagnetic nondestructive technique widely used to detect and quantify the flaws in conducting materials. In the present study a differential Hall-sensor probe which is used in the PEC system has been fabricated for the detection of defects in stainless steel pipelines. The differential probe has an exciting coil with two Hall-sensors. A stainless steel test sample with electrical discharge machining (EDM) notches under different depths of 1–5 mm was made and the sample was laminated by plastic insulation having uniform thickness to simulate the pipelines in nuclear power plants (NPPs). The driving coil in the probe is excited by a rectangular current pulse and the resultant response, which is the difference of the two Hall–sensors, has been detected as the PEC probe signal. The discriminating time domain features of the detected pulse such as peak value and time to zero are used to interpret the experimental results with the defects in the test sample. A feature extraction technique such as spectral power density has been devised to infer the PEC response.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 7 )

Date of Publication:

Apr 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.