By Topic

Adaptive Active Visual Servoing of Nonholonomic Mobile Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongchun Fang ; Inst. of Robot. & Autom. Inf. Syst., Nankai Univ., Tianjin, China ; Xi Liu ; Xuebo Zhang

This paper presents a novel two-level scheme for adaptive active visual servoing of a mobile robot equipped with a pan camera. In the lower level, the pan platform carrying an onboard camera is controlled to keep the reference points lying around the center of the image plane. On the higher level, a switched controller is utilized to drive the mobile robot to reach the desired configuration through image feature feedback. The designed active visual servoing system presents such advantages as follows: 1) a satisfactory solution for the field-of-view problem; 2) global high servoing efficiency; and 3) free of any complex pose estimation algorithm usually required for visual servoing systems. The performance of the active visual servoing system is proven by rigorous mathematical analysis. Both simulation and experimental results are provided to validate the effectiveness of the proposed active visual servoing method.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 1 )