By Topic

Adaptive Gaussian Sum Filters for Space Surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Horwood, J.T. ; Numerica Corp., Loveland, CO, USA ; Poore, A.B.

The representation of the uncertainty of a stochastic state by a Gaussian mixture is well-suited for nonlinear tracking problems in high dimensional data-starved environments such as space surveillance. In this paper, the framework for a Gaussian sum filter is developed emphasizing how the uncertainty can be propagated accurately over extended time periods in the absence of measurement updates. To achieve this objective, a series of metrics constructed from tensors of higher-order cumulants are proposed which assess the consistency of the uncertainty and provide a tool for implementing an adaptive Gaussian sum filter. Emphasis is also placed on the algorithm's potential for parallelization which is complemented by the use of higher-order unscented filters based on efficient multidimensional Gauss-Hermite quadrature schemes. The effectiveness of the proposed Gaussian sum filter is illustrated in a case study in space surveillance involving the tracking of an object in a six-dimensional state space.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 8 )