By Topic

Comprehensive Study on the Total Dose Effects in a 180-nm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhiyuan Hu ; Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China ; Zhangli Liu ; Hua Shao ; Zhengxuan Zhang
more authors

The effects of total ionizing on a 180-nm CMOS technology are comprehensively studied. Firstly, we show new results on the hump effect which has strong relationship to the STI corner oxide thickness. Secondly, the leakage current degradation in various devices after radiation is investigated. For the intra-device leakage, both body doping concentration and STI corner thickness play very important roles. For the inter-device leakage, due to the low electric field at the STI bottom, it is found to be insensitive to ionizing radiation. Thirdly, a method for extracting the effective threshold voltage of the sidewall parasitic transistor is proposed by studying the leakage output characteristics. Finally, we find that the drain saturation current increases in NMOS transistors after radiation, especially in the narrow-channel ones.

Published in:

IEEE Transactions on Nuclear Science  (Volume:58 ,  Issue: 3 )