By Topic

Performance modeling of embedded applications with zero architectural knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lattuada, M. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Ferrandi, F.

Performance estimation is a key step in the development of an embedded system. Normally, the performance evaluation is performed using a simulator or a performance mathematical model of the target architecture. However, both these approaches are usually based on the knowledge of the architectural details of the target. In this paper we present a methodology for automatically building an analytical model to estimate the performance of an application on a generic processor without requiring any information about the processor architecture but the one provided by the GNU GCC Intermediate Representation. The proposed methodology exploits the linear regression technique based on an application analysis performed on the Register Transfer Level internal representation of the GNU GCC compiler. The benefits of working with this type of model and with this intermediate representation are three: we take into account most of the compiler optimizations, we implicitly consider some architectural characteristics of the target processor and we can easily estimate the performance of portions of the specification. We validate our approach by evaluating with cross-validation technique the accuracy and the generality of the performance models built for the ARM926EJ-S and the LEON3 processors.

Published in:

Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on

Date of Conference:

24-29 Oct. 2010