Cart (Loading....) | Create Account
Close category search window
 

Design and early evaluation of a 3-D die stacked chip multi-vector processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Egawa, R. ; Cyberscience Center, Tohoku Univ., Sendai, Japan ; Funaya, Y. ; Nagaoka, R. ; Musa, A.
more authors

Modern vector processors have significant advantages over commodity-based scalar processors for memory-intensive scientific applications. However, vector processors still keep single core architecture, though chip multiprocessors (CMPs) have become the mainstream in recent processor architectures. To realize more efficient and powerful computations on a vector processor, this paper proposes a 3-D stacked chip multi-vector processor (CMVP) by combining a chip multi-vector processor architecture and the coarse-grain die stacking technology. The 3-D stacked CMVP consists of I/O layers, core layers and the vector cache layers. The I/O layer significantly improves off-chip memory bandwidth, and the vector core layer enables to install many vector cores on a die. The vector cache layer increases the capacity of on-chip memory and a high memory bandwidth to achieve the performance improvement and energy reduction by deceasing the number of off-chip memory accesses. The results of performance evaluation using real scientific and engineering applications show the potential of the 3-D stacked CMVP. Moreover, this paper clarifies that introducing the vector cache is more energy-effective than increasing the off-chip memory bandwidth to achieve the same sustained performance on the 3-D stacked CMVP.

Published in:

3D Systems Integration Conference (3DIC), 2010 IEEE International

Date of Conference:

16-18 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.