By Topic

Adaptive Clutter Measurement Density Estimation for Improved Target Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taek Lyul Song ; Hanyang University ; Darko Musicki

In a surveillance situation the origin of each measurement is uncertain. Each measurement may be a false (clutter) measurement, or it may be a target detection. Probabilistic methods are usually used to discriminate between the clutter and the target measurements. Clutter measurement density is an important parameter in this process. The values of the clutter measurement density in the surveillance space are rarely known a priori, and are usually estimated using sensor data and track information. A novel approach is presented and evaluated for estimating the values of clutter measurement density, which significantly enhances target tracking. Simulation results validate this approach.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:47 ,  Issue: 2 )