By Topic

Two-Dimensional Hidden Markov Model for Classification of Continuous-Valued Noisy Vector Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Baggenstoss, P.M. ; Naval Undersea Warfare Center, Newport, RI, USA

In this paper we present a statistical model with a nonsymmetric half-plane (NSHP) region of support for two-dimensional continuous-valued vector fields. It has the simplicity, efficiency, and ease of use of the well-known hidden Markov model (HMM) and associated Baum-Welch algorithms for time-series and other one-dimensional problems. At the same time it is able to learn textures on a two-dimensional field. We describe a fast approximate forward procedure for computation of the joint probability density function (pdf) of the vector field as well as an approximate Baum-Welch algorithm for parameter reestimation. Radar and sonar applications include classification of two-dimensional fields such as range versus azimuth or range versus aspect angle data wherein each data point in the field consists of a multi-dimensional feature vector. We test the method using synthetic textures.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:47 ,  Issue: 2 )