By Topic

A Decoupling Approach for Low-Complexity Vector Perturbation in Multiuser Downlink Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seok-Hwan Park ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Hyeon-Seung Han ; Sunho Lee ; Inkyu Lee

In this letter, we propose an efficient algorithm which reduces the complexity of conventional vector perturbation schemes by searching the real and imaginary components of a perturbation vector individually. To minimize a performance loss induced from the decoupled joint search, we apply diagonal precoding at the transmitter whose parameters are iteratively optimized to maximize the chordal distance between subspaces spanned by the real and imaginary components. We also propose a simple non-iterative method with a slight performance loss which can achieve a significant complexity reduction compared to the conventional vector perturbation schemes.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 6 )