By Topic

Vibration analysis of cubic rotary- linear piezoelectric actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mashimo, T. ; Electron. Inspired-Interdiscipl. Res. Inst., Toyohashi Univ. of Technol., Toyohashi, Japan ; Toyama, S.

Cubic design of a stator in a rotary-linear piezoelectric actuator is sophisticated and interesting, but the vibration theory of the cubic stator remains unclear when using the finite element method (FEM). In this paper, we analyze the vibration behavior of the cubic stator by applying the energy method, which distinguishes the component of mechanical energy. By changing the design of the stator (especially the length in the direction of the through-hole axis), we clarify how the vibration modes are in accordance at one equal frequency in cubic shape. The behavior of the vibration modes is discussed using conventional vibration theory of a beam and a plate.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 4 )