By Topic

Fast Mode Decision for Multiview Video Coding Using Mode Correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huanqiang Zeng ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Kai-Kuang Ma ; Canhui Cai

Exhaustive mode decision has been exploited in multiview video coding for effectively improving the coding efficiency, but at the expense of yielding much higher computational complexity. In this paper, a fast mode decision algorithm, called the mode correlation-based mode decision (MCMD), is proposed to speed up the encoding process by reducing the number of the modes required to be checked. In our approach, all the prediction modes are first categorized into five motion-activity classes, and only one of them will be chosen to identify the optimal mode in a hierarchical manner, as follows. For each macroblock (MB), the proposed MCMD algorithm always begins with checking whether the rate-distortion cost computed at the SKIP mode (i.e., Class 1) is below an adaptive threshold for providing a possible early termination chance. If this early termination condition is not met, one of the remaining four motion-activity classes will be chosen for further mode checking according to the analysis of the predicted motion vector (PMV) of the current MB. The above-mentioned adaptive threshold and PMV are derived by exploiting the mode correlation between the current MB and a set of adjacent MBs (i.e., region of support) in the current view and its neighboring view. Experimental results have shown that compared with exhaustive mode decision, which is a default approach set in the joint multiview video model (JMVM) reference software, the proposed MCMD algorithm achieves a reduction of the computational complexity by 73.39% on average, while incurring only 0.07 dB loss in peak signal-to-noise ratio (PSNR) and 2.22% increment on the total bit rate.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:21 ,  Issue: 11 )