Cart (Loading....) | Create Account
Close category search window
 

Cerebrovascular Mechanical Properties and Slow Waves of Intracranial Pressure in TBI Patients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shahsavari, S. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; McKelvey, T. ; Ritzen, C.E. ; Rydenhag, B.

Myogenic autoregulation of cerebral blood flow is one of the mechanisms affecting cerebral hemodynamics. Short or long-lasting changes in intracranial pressure (ICP) are believed to reveal the responses of the cerebral system to myogenic stimuli. Through the incorporation of a theoretical model into the experimental measurements of cerebrovascular distensibility and compliance in patients with traumatic brain injury (TBI), the current study is an attempt to explain ICP dynamics in either presence or absence of cerebral autoregulation. The pulse wave velocity and transfer function between arterial blood pressure and ICP were utilized as the major tools to reflect variations in the mechanical properties of distant cerebral arteries/arteriols. The results imply that different states of cerebral autoregulation and associated regimes within the cerebrovascular system can lead to different types of interrelationship between the slow variations of ICP, cerebral arterial distensibility, and compliance. Consequently, each of these classes may require different types of treatment on patients with TBI.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.