Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Essential roles of exploiting internal parallelism of flash memory based solid state drives in high-speed data processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Flash memory based solid state drives (SSDs) have shown a great potential to change storage infrastructure fundamentally through their high performance and low power. Most recent studies have mainly focused on addressing the technical limitations caused by special requirements for writes in flash memory. However, a unique merit of an SSD is its rich internal parallelism, which allows us to offset for the most part of the performance loss related to technical limitations by significantly increasing data processing throughput. In this work we present a comprehensive study of essential roles of internal parallelism of SSDs in high-speed data processing. Besides substantially improving I/O bandwidth (e.g. 7.2×), we show that by exploiting internal parallelism, SSD performance is no longer highly sensitive to access patterns, but rather to other factors, such as data access interferences and physical data layout. Specifically, through extensive experiments and thorough analysis, we obtain the following new findings in the context of concurrent data processing in SSDs. (1) Write performance is largely independent of access patterns (regardless of being sequential or random), and can even outperform reads, which is opposite to the long-existing common understanding about slow writes on SSDs. (2) One performance concern comes from interference between concurrent reads and writes, which causes substantial performance degradation. (3) Parallel I/O performance is sensitive to physical data-layout mapping, which is largely not observed without parallelism. (4) Existing application designs optimized for magnetic disks can be suboptimal for running on SSDs with parallelism. Our study is further supported by a group of case studies in database systems as typical data-intensive applications. With these critical findings, we give a set of recommendations to application designers and system architects for exploiting internal parallelism and maximizing the performance potentia l of SSDs.

Published in:

High Performance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on

Date of Conference:

12-16 Feb. 2011