By Topic

A Semidefinite Relaxation Method for Energy-Based Source Localization in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gang Wang ; State Key Lab. of Integrated Services Networks (ISN Lab.), Xidian Univ., Xi''an, China

In this paper, the energy-based localization problem in wireless sensor networks is addressed. We focus on the weighted least squares (WLS) estimation of the source location. Due to the nonconvex nature of the WLS formulation, its global solution is hard to obtain without a good initial estimate. We propose a semidefinite relaxation method for this localization problem. To do so, we transform the original WLS formulation into a nonconvex approximate WLS (AWLS) formulation, which is then relaxed as a semidefinite programming (SDP). We show that it is possible for the SDP to be tight, i.e., the SDP solves the original AWLS problem. For the cases where the SDP is not tight, a procedure called Gaussian randomization is applied to further refine the SDP solution. Simulation results show that the proposed method can outperform the existing methods at high noise levels.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 5 )