By Topic

Crossbar Logic Using Bipolar and Complementary Resistive Switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Rosezin ; Peter Grünberg Institute and Jülich Aachen Research Alliance–Fundamentals for Future Information Technology, Jülich Research Center, Jülich, Germany ; E. Linn ; C. Kugeler ; R. Bruchhaus
more authors

Memristive switches are promising devices for future nonvolatile nanocrossbar memory devices. In particular, complementary resistive switches (CRSs) are the key enabler for passive crossbar array implementation solving the sneak path obstacle. To provide logic along with memory functionality, “material implication” (IMP) was suggested as the basic logic operation for bipolar resistive switches. Here, we show that every bipolar resistive switch as well as CRSs can be considered as an elementary IMP logic unit and can systematically be understood in terms of finite-state machines, i.e., either a Moore or a Mealy machine. We prove our assumptions by measurements, which make the IMP capability evident. Local fusion of logic and memory functions in crossbar arrays becomes feasible for CRS arrays, particularly for the suggested stacked topology, which offers even more common Boolean logic operations such as and and nor .

Published in:

IEEE Electron Device Letters  (Volume:32 ,  Issue: 6 )