Cart (Loading....) | Create Account
Close category search window
 

Scalable and Efficient FPGA Implementation of Montgomery Inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murat, E. ; Sabanci Univ., Istanbul, Turkey ; Kardas̀§, S. ; Savas, E.

Modular inversion is an operation frequently used in many contemporary cryptographic applications, especially in public-key crypto-systems. In this paper, we present an efficient, scalable and generic hardware implementation of modular inversion operation optimized for a class of FPGA (Field Programmable Gate Array) devices. The long carry chains, which increase critical path delay, are avoided by utilizing generic block adder and subtract or circuits that exploit the hardwired carry logic of the FPGA devices. In our design, we utilize the Montgomery modular inversion that is chosen for compatibility with Montgomery multiplication operation. The effectiveness and efficiency of our methods are explored by realizing our design on a Xilinx Spartan-6 FPGA, which is a recent, low-end reconfigurable logic device popular in embedded applications for its power efficiency. Timing simulation demonstrate that our design achieves maximum clock frequency of 280 MHz. The implementation performs one modular inversion operation in a considerably small amount of time and it takes a negligible amount of resources on FPGA.

Published in:

Lightweight Security & Privacy: Devices, Protocols and Applications (LightSec), 2011 Workshop on

Date of Conference:

14-15 March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.