By Topic

Scalar Quantization for Relative Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
John Z. Sun ; Res. Lab. of Electron., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Vivek K. Goyal

Quantizers for probabilistic sources are usually optimized for mean-squared error. In many applications, maintaining low relative error is a more suitable objective. This measure has previously been heuristically connected with the use of logarithmic companding in perceptual coding. We derive optimal companding quantizers for fixed rate and variable rate under high-resolution assumptions. The analysis shows logarithmic companding is optimal for variable-rate quantization but generally not for fixed-rate quantization. Naturally, the improvement in relative error from using a correctly optimized quantizer can be arbitrarily large. We extend this framework for a large class of nondifference distortions.

Published in:

2011 Data Compression Conference

Date of Conference:

29-31 March 2011