By Topic

Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Inoue, T. ; Central Res. Inst. of Electr. Power Ind., Tokyo, Japan ; Taniguchi, H. ; Ikeguchi, Y. ; Yoshida, K.

A procedure for estimating the inertia constant M(=2H) of a power system and total on-line capacity of spinning-reserve support generators, using transients of the frequency measured at an event such as a generator load rejection test, is presented. A polynomial approximation with respect to time is applied to the waveform of the transients in estimating the inertia constant, and a simple model based on the idea of average system frequency is assumed in estimating the capacity of the generators. Results of the estimation using the transients at 10 events show that the inertia constant of the 60 Hz power system of Japan is around 14 to 18 seconds in the system load base, and the capacity of the spinning-reserve support generators is 20 to 40% of the system load. The proposed procedure is expected to be tested by Kansai Electric Power Company with increased number of events. This effort will contribute to estimate and evaluate the dynamic behavior of the system frequency in loss of generation or load

Published in:

Power Systems, IEEE Transactions on  (Volume:12 ,  Issue: 1 )