By Topic

Trajectory Optimization for the Engine–Generator Operation of a Series Hybrid Electric Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nino-Baron, C.E. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Tariq, A.R. ; Guoming Zhu ; Strangas, E.G.

This paper presents a methodology of calculating the optimal torque and speed commands for the engine-generator system of a series hybrid electric vehicle (HEV). In series HEVs, the engine-generator subsystem provides electrical energy to the dc link. This paper proposes an optimal control strategy of the engine-generator subsystem to generate a desired amount of energy within a given period of time. The optimization algorithm, based on trajectory optimization, determines the torque and speed reference signals for the engine-generator subsystem that achieve maximum efficiency. A simplified version of the controller is also presented for online implementation. The proposed control strategy is compared with nonoptimized control techniques, and simulation results show the improvements in energy efficiency.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 6 )