Cart (Loading....) | Create Account
Close category search window
 

Finite element modeling of atomic force microscopy cantilever dynamics during video rate imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Howard-Knight, J.P. ; Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom ; Hobbs, J.K.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3567933 

A dynamic finite element model has been constructed to simulate the behavior of low spring constant atomic force microscope (AFM) cantilevers used for imaging at high speed without active feedback as in VideoAFM. The model is tested against experimental data collected at 20 frame/s and good agreement is found. The complex dynamics of the cantilever, consisting of traveling waves coming from the tip sample interaction, reflecting off the cantilever-substrate junction, and interfering with new waves created at the tip, are revealed. The construction of the image from this resulting nonequilibrium cantilever deflection is also examined. Transient tip-sample forces are found to reach values up to 260 nN on a calibration grid sample, and the maximum forces do not always correspond to the position of steepest features as a result of energy stored in the cantilever.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 7 )

Date of Publication:

Apr 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.