Cart (Loading....) | Create Account
Close category search window
 

Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhao, K. ; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China ; Xia, X.X. ; Bai, H.Y. ; Zhao, D.Q.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3575562 

We report a high entropy metallic glass of Zn20Ca20Sr20Yb20(Li0.55Mg0.45)20 via composition design that exhibiting remarkable homogeneous deformation without shear banding under stress at room temperature. The glass also shows properties such as low glass transition temperature (323 K) approaching room temperature, low density and high specific strength, good conductivity, polymerlike thermoplastic manufacturability, and ultralow elastic moduli comparable to that of bones. The alloy is thermally and chemically stable.

Published in:

Applied Physics Letters  (Volume:98 ,  Issue: 14 )

Date of Publication:

Apr 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.