By Topic

Probabilistic multiscale image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vincken, K.L. ; Image Scis. Inst., Univ. Hospital Utrecht, Netherlands ; Koster, A.S.E. ; Viergever, M.A.

A method is presented to segment multidimensional images using a multiscale (hyperstack) approach with probabilistic linking. A hyperstack is a voxel-based multiscale data structure whose levels are constructed by convolving the original image with a Gaussian kernel of increasing width. Between voxels at adjacent scale levels, child-parent linkages are established according to a model-directed linkage scheme. In the resulting tree-like data structure, roots are formed to indicate the most plausible locations in scale space where segments in the original image are represented by a single voxel. The final segmentation is obtained by tracing back the linkages for all roots. The present paper deals with probabilistic (or multiparent) linking. The multiparent linkage structure is translated into a list of probabilities that are indicative of which voxels are partial volume voxels and to which extent. Probability maps are generated to visualize the progress of weak linkages in scale space when going from fine to coarser scale. It is demonstrated that probabilistic linking gives a significantly improved segmentation as compared with conventional (single-parent) linking

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 2 )