By Topic

On view likelihood and stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Weinshall ; Inst. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; M. Werman

We define two measures on views: view likelihood and view stability. View likelihood measures the probability that a certain view of a given 3D object is observed; it may be used to identify typical, or “characteristic” views. View stability measures how little the-image changes as the viewpoint is slightly perturbed; it may be used to identify “generic” views. Both definitions are shown to be identical up to the prior probability of camera orientations, and determined by the 2D metric used to compare images. We analytically derive the stability and likelihood measures for two feature-based 2D metrics, where the most stable and most likely view is shown to be the flattest view of the 3D shape. Incorporating view likelihood or stability in 3D object recognition and 3D reconstruction increases the chance of robust performance. In particular, we propose to use these measures to enhance 3D object recognition and 3D reconstruction algorithms, by adding a second step where the most likely solution is selected among all feasible solutions. These applications are demonstrated using simulated and real images

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 2 )