By Topic

Development of Single Phase Liquid Cooling Solution for 3-D Silicon Modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. P. Tan ; Temasek Laboratories, Nanyang Technological University, Singapore ; Kok Chuan Toh ; Navas Khan ; D. Pinjala
more authors

Demand for increased functionalities and the trend in product miniaturization have created new challenges for electronic packaging. The move to 3-D packages combines the benefits of small footprint packages and through-silicon-vias technology to overcome the limitations. However, thermal management of such packages has become the bottleneck as cooling solutions cannot access the intermediate stacks within the package. A single phase liquid microchannel cooling solution had been designed in this paper to overcome such limitations. First, the thermal resistances within the package had been identified using a 1-D thermal network. The interconnect and silicon substrate (carrier) thermal resistances have been found to be of the same order of magnitude. Flip chip with conductive underfill is chosen as the interconnect scheme balancing the thermal, mechanical, and electrical requirements. Flow distribution in the microchannels and their impact on the thermal performance were also analyzed numerically. A dual inlet, dual outlet microchannel heatsink design with a supply plenum tapering downstream was found to provide the most even flow distribution for removing the heat away from the die. A thermal resistance of 0.15 °C/W and lower temperature variation on die can be obtained with such a microchannel array arrangement. Lower hydraulic losses arising from the shorter flow length and lower mean velocities also allowed the integrated pumps to operate either at smaller sizes or higher flowrates. The methodology to derive the cooling solution is presented with due consideration to the silicon fabrication processes involved.

Published in:

IEEE Transactions on Components, Packaging and Manufacturing Technology  (Volume:1 ,  Issue: 4 )